www.webmoney.ru

Добавить в корзину Удалить из корзины Купить

Выборочные обследования


ID работы - 634346
статистика (контрольная работа)
количество страниц - 25
год сдачи - 2012



СОДЕРЖАНИЕ:



Введение. 3
1. Виды выборочного изучения. 6
2. Принцип "гнезд" как вид классификации генеральной совокупности 10
3. Использование "гнездового" способа в многоступенчатой комбинированной выборке 13
4. Ошибки выборок 18
5. Определение необходимого объема выборки 22
Заключение. 23
ЛИТЕРАТУРА 26





ВВЕДЕНИЕ:



Введение.
В связи с тем, что статистика имеет дело с массовыми явлениями, статистические исследования весьма трудоемки и дороги. Поэтому давно возникла мысль заменить сплошное наблюдение выборочным. Важная роль в формировании выборочного метода наблюдения принадлежит работам Якоба Бернулли (1654-1705). Весомый вклад в разработку теоретических основ выборочного метода внесли русские математики - П.Л. Чебышев, А.М. Ляпунов, А.А. Марков. Российская статистика имеет немалые заслуги в практическом применении выборочного метода.
В последние годы выборочные обследования стали широко применяться в работе органов государственной статистики. Крупные и средние предприятия охватываются сплошным наблюдением за их деятельностью, а наблюдение за деятельностью малых предприятий производится с помощью выборочных обследований.
Применение выборочного наблюдения взамен сплошного дает возможность лучше организовать наблюдение, обеспечивает быстроту проведения наблюдения, приводит к экономии средств и затрат труда на получение и обработку информации.
Множество всех единиц совокупности, обладающих определенным признаком и подлежащих изучению, носит в статистике название генеральной совокупности.
На практике по тем или иным причинам не всегда возможно или же нецелесообразно рассматривать всю генеральную совокупность. Тогда ограничиваются изучением лишь некоторой части ее, конечной целью которого является распространение полученных результатов на всю генеральную совокупность, т. е. применяют выборочный метод.
Для этого из генеральной совокупности особым образом отбирается часть элементов, так называемая выборка, и результаты обработки выборочных данных (например, средние арифметические значения) обобщаются на всю совокупность.
Теоретической основой выборочного метода является закон больших чисел. В силу этого закона при ограниченном рассеивании признака в генеральной совокупности и достаточно большой выборке с вероятностью, близкой к полной достоверности, выборочная средняя может быть сколь угодно близка к генеральной средней. Закон этот, включающий в себя группу теорем, доказан строго математически. Таким образом, средняя арифметическая, рассчитанная по выборке, может с достаточным основанием рассматриваться как показатель, характеризующий генеральную совокупность в целом.
Разумеется, не всякая выборка может быть основой для характеристики всей совокупности, к которой она принадлежит. Таким свойством обладают лишь репрезентативные (представительные) выборки, т. е. выборки, которые правильно отражают свойства генеральной совокупности. Существуют способы, позволяющие гарантировать достаточную репрезентативность выборки. Как доказано в ряде теорем математической статистики, таким способом при условии достаточно большой выборки является метод случайного отбора элементов генеральной совокупности, такого отбора, когда каждый элемент генеральной совокупности имеет равный с другими элементами шанс попасть в выборку. Выборки, полученные таким способом, называются случайными выборками. Случайность выборки является, таким образом, существенным условием применения выборочного метода
Так, при организации выборочного обследования и формировании выборки из имеющихся сплошных данных исследователь располагает определенной свободой маневра для обеспечения репрезентативности выборок. При этом он может опираться на хорошо разработанную в математической статистике теорию, методику и технику получения таких выборок.
При оперировании же данными ранее проведенных выборочных обследований следует проверить, в какой мере они были выполнены в соответствии с требованиями, предъявляемыми к выборочному методу. Для этого надо знать, как было проведено это обследование. Чаще всего это вполне можно сделать.
И совсем иное дело - естественные выборки данных. Прежде всего необходимо доказать их репрезентативность. Без этого экстраполяция показателей выборок на всю изучаемую совокупность будет необоснованной. Поскольку пока еще нет достаточно надежных методов математической проверки репрезентативности естественных выборок, то решающую роль здесь играет выяснение истории их возникновения и содержательный анализ имеющихся данных.




СПИСОК ЛИТЕРТУРЫ:



ЛИТЕРАТУРА
1. Гришин А.Ф. Статистика: Учеб. Пособие. - М.: Финансы и статистика, 2003.
2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник.-М.:ИНФРА - М., 1996.
3. Ефремова М.Р. "Общая теория статистики"; М.: "Инфра-М", 1996.
4. Переяслова И.Г., Колбачев Е.Б., Переяслова О.Г. Статистика. Серия "Высшее образование". - Ростов н/Д: "Феникс", 2003.
5. Социально-экономическая статистика: Учебник для вузов/Под ред. проф. Б.И.Башкатова. - М.: ЮНИТИ-ДАНА, 2002.
6. Экономическая статистика (под. ред. Ю.Н. Иванова) М.:ИНФРА-М, 1998.

Цена: 1000.00руб.

ДОБАВИТЬ В КОРЗИНУ

УДАЛИТЬ ИЗ КОРЗИНЫ

КУПИТЬ СРАЗУ


ЗАДАТЬ ВОПРОС

Будьте внимательны! Все поля обязательны для заполнения!

Контактное лицо :
*
email :
*
Введите проверочный код:
*
Текст вопроса:
*



Будьте внимательны! Все поля обязательны для заполнения!

Copyright © 2009, Diplomnaja.ru