Добавить в корзину Удалить из корзины Купить |
Разработка программы для сравнения дискретной динамической системы и её компьютерного аналога ID работы - 743271 программирование (курсовая работа) количество страниц - 12 год сдачи - 2007 СОДЕРЖАНИЕ: Содержание СОДЕРЖАНИЕ 2 1. ВВЕДЕНИЕ 3 1.1. ГЛОССАРИЙ 3 1.2. ОПИСАНИЕ ПРЕДМЕТНОЙ ОБЛАСТИ 3 1.3. НЕФОРМАЛЬНАЯ ПОСТАНОВКА ЗАДАЧИ 4 2. ТРЕБОВАНИЯ К ОКРУЖЕНИЮ 4 3. ФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ. 4 4. ТРЕБОВАНИЯ К ИНТЕРФЕЙСУ 5 5. ПРОЕКТ 5 5.1. СРЕДСТВА РЕАЛИЗАЦИИ 5 5.2. МОДУЛИ И АЛГОРИТМЫ 5 5.3. СТРУКТУРЫ ДАННЫХ 10 5.4. ПРОЕКТ ИНТЕРФЕЙСА 10 ЗАКЛЮЧЕНИЕ 11 СПИСОК ЛИТЕРАТУРЫ 12 ВВЕДЕНИЕ: 1. Введение 1.1. Глоссарий Динамическая система — система, эволюционирующая со временем. Дискретная динамическая система (далее ДДС) — динамическая система, заданная рекуррентным соотношением. Такое название получила, потому что время — номер члена последовательности — дискретно. n-я итерация функции F определяется по индукции F1(x) = F(x), Fn+1(x) = F(Fn(x)). Орбита (траектория или фазовая кривая) точки x* — последовательность {Fn(x*)}. Точки x0, x1,..., xm-1 образуют цикл длиной (с периодом) m, если x1 = F(x0), x2 = F(x1),..., x0 = F(xm-1) и все элементы различны. Орбита является в конечном итоге периодической, если xn+m = xn становится справед-ливым только после некоторого конечного числа шагов. Неподвижная точка — другое название 1-цикла. Неподвижная точка x* называется устойчивой (притягивающей), если |F'(x*)| < 1 (в этом случае некоторая окрестность x* будет сходиться к x*). Это определение очевид-ным образом переносится на случай циклов. Логистическое отображение — F(x) = ?x(1 - x). 1.2. Описание предметной области Динамика большинства реальных процессов описывается дифференциальными урав-нениями. Однако существует ряд биологических видов (многие насекомые, лососевые ры-бы), популяции которых лучше описываются рекуррентными уравнениями. Объясняется это тем, что за время развития очередного поколения предыдущее поколение успевает вы-мереть. Если условия среды остаются постоянными, то численность одного поколения це-ликом определяется численностью предыдущего: xn+1 = F(xn), где F — некоторая функция. Дискретные модели простейших биоценозов позволяют описать такие реальные эффекты, как возникновение циклов динамики численности лимитированных популяций, псевдо-случайное поведение экосистем и др. [3] Имея какое-то задание динамической системы, далеко не всегда можно найти и опи-сать ее траектории в явном виде. Поэтому обычно рассматриваются более простые вопро-сы об общем поведении системы: • есть ли у системы замкнутые фазовые кривые, то есть может ли она вернуться в на-чальное состояние в ходе эволюции? • что можно сказать о поведении «типичной» динамической системы из некоторого класса? • что можно сказать о поведении динамических систем, «близких» к данной? При изучении ДДС на компьютере на каждой итерации неизбежно появляются ошибки округления, что приводит, вообще говоря, к появлению другой ДДС. Будем назы-вать её компьютерным аналогом ДДС (далее КАДДС). Возникает задача их сравнения в смысле перечисленных вопросов. В данной работе рассматривается логистическое СПИСОК ЛИТЕРТУРЫ: Список литературы [1] Бочканов С., Быстрицкий В. Решение полиномиальных уравнений и уравнений общего вида, http://alglib.sources.ru/equations/ [2] Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории. М.: Постмаркет, 2000. [3] Шапиро А. П., Луппов С. П. Рекуррентные уравнения в теории популяционной биологии. М.: Наука, 1983. [4] Шустер Г. Детерминированный хаос: Введение. М.: Мир, 1988. [5] Vickery C. Some reference material on the IEEE-754 Floating Point Standart, http://babbage.cs.qc.edu/IEEE-754/References.xhtml Цена: 900.00руб. |
ЗАДАТЬ ВОПРОС
Copyright © 2009, Diplomnaja.ru