www.webmoney.ru

Добавить в корзину Удалить из корзины Купить

Решение тригонометрических неравенств


ID работы - 699480
математика (контрольная работа)
количество страниц - 5
год сдачи - 2012



СОДЕРЖАНИЕ:



1. Вступительное слово....................................................................................3
2. Этапы "большого пути"...............................................................................3
3. Тригонометрические отношения.................................................................3
4. Тригонометрические функции.....................................................................3
5. Тригонометрические уравнения...................................................................3
6. Тригонометрические неравенства................................................................3
7. Способы решения тригонометрических неравенств...................................4
8. В помощь начинающему ..............................................................................5
9. Заключение....................................................................................................5
10. Список использованной литературы..........................................................6










ВВЕДЕНИЕ:



Решение тригонометрических неравенств стоит в одном ряду с такими важными темами, как решение числовых неравенств и решение систем неравенств с одной переменной. Исторически сложилось, что тригонометрическим уравнениям и неравенствам уделялось особое место в школьном курсе. Еще греки, на заре человечества, считали тригонометрию важнейшей из наук, ибо геометрия - царица математики, а тригонометрия - царица геометрии. Поэтому и мы, не оспаривая древних греков, будем считать тригонометрию одним из важнейших разделов школьного курса, да и всей математической науки в целом.
С чего же начинается обучение решению тригонометрических неравенств в школе? Естественно, с самих тригонометрических функций. Сначала даются сами отношения sin x, cos x, tg x и ctg x. Делается это на конкретных примерах рассматриваемых треугольников. Затем делается важный переход от синуса и косинуса в прямоугольном треугольнике к этим же отношениям, но уже в произвольном угле. Sin и cos освобождаются от конкретной геометрической привязки и эти понятия становятся шире.
Следующим этапом введения понятий sin x, cos x, tg x и ctg x является рассмотрение функциональных зависимостей или попросту функций y = sin x, y = cos x, y = tg x и y = ctg x соответственно. На этом этапе даются все основные свойства этих функций, рассматриваются области определения и значений, промежутки знакопостоянства, и главное - графики этих функций. Анализ функции нельзя считать полным, так как еще не усвоен и не применялся аппарат дифференцирования, но для решений тригонометрических неравенств почва уже подготовлена и ребята хорошо "вооружены" теоретическими знаниями.
Наконец последний подготовительный этап "большого пути" - решение тригонометрических уравнений. Здесь отрабатываются последние нюансы, ребенок учится оперировать сложными тригонометрическими конструкциями, но главное, именно сейчас даются основные тригонометрические тождества и производные от них. Помощь этого тригонометрического аппарата трудно переоценить. Знаниями полученными здесь и сейчас ученики смогут пользоваться всю оставшуюся жизнь. Мощь блока тригонометрических тождеств поистине потрясает, так как с его помощью управляться с громоздкими, "трехэтажными" тригонометрическими выражениями становится также просто, как и с алюминиевой вилкой.




СПИСОК ЛИТЕРТУРЫ:



1. В. С. Крамор, Повторяем и систематизируем школьный курс
алгебры и начал анализа, Москва, Просвещение, 1990 г.
2. С. А. Теляковский, Алгебра, учебник для 8 класса средней школы,
Москва, Просвещение, 1987 г.
3. Личные заметки и наблюдения автора.

Цена: 1000.00руб.

ДОБАВИТЬ В КОРЗИНУ

УДАЛИТЬ ИЗ КОРЗИНЫ

КУПИТЬ СРАЗУ


ЗАДАТЬ ВОПРОС

Будьте внимательны! Все поля обязательны для заполнения!

Контактное лицо :
*
email :
*
Введите проверочный код:
*
Текст вопроса:
*



Будьте внимательны! Все поля обязательны для заполнения!

Copyright © 2009, Diplomnaja.ru