www.webmoney.ru

Добавить в корзину Удалить из корзины Купить

Численные методы интегрирования


ID работы - 695376
математика (контрольная работа)
количество страниц - 11
год сдачи - 2012



СОДЕРЖАНИЕ:




1.Численные методы интегрирования
2.Вывод формулы Симпсона
3.Геометрическая иллюстрация
4.Выбор шага интегрирования
5.Примеры





ВВЕДЕНИЕ:



Задачи численного интегрирования приходится решать для функций, заданных таблично, функцией, интегралы от которых не берутся в элементарных функциях, и т.д. Рассмотрим только функции одной переменной.
Вместо функции, которую требуется проинтегрировать, проинтегрируем интерполяционный многочлен. Методы, основанные на замене подынтегральной функции интерполяционным многочленом, позволяют по параметрам многочлена оценить точность результата или же по заданной точности подобрать эти параметры.
Численные методы условно можно сгруппировать по способу аппроксимации подынтегральной функции.
Методы Ньютона-Котеса основаны на аппроксимации функции полиномом степени . Алгоритм этого класса отличается только степенью полинома. Как правило, узлы аппроксимирующего полинома - равноотносящие.
Методы сплайн-интегрирования базируются на аппроксимации функции сплайном-кусочным полиномом.
В методах наивысшей алгебраической точности (метод Гаусса) используются специально выбранные неравноотносящие узлы, обеспечивающие минимальную погрешность интегрирования при заданном (выбранном) количестве узлов.
Методы Монте-Карло используются чаще всего при вычислении кратных интегралов, узлы выбираются случайным образом, ответ носит вероятностный характер.




СПИСОК ЛИТЕРТУРЫ:




Цена: 1000.00руб.

ДОБАВИТЬ В КОРЗИНУ

УДАЛИТЬ ИЗ КОРЗИНЫ

КУПИТЬ СРАЗУ


ЗАДАТЬ ВОПРОС

Будьте внимательны! Все поля обязательны для заполнения!

Контактное лицо :
*
email :
*
Введите проверочный код:
*
Текст вопроса:
*



Будьте внимательны! Все поля обязательны для заполнения!

Copyright © 2009, Diplomnaja.ru