www.webmoney.ru

Добавить в корзину Удалить из корзины Купить

Реализация системы распознавания бинарных изображений


ID работы - 698300
информационные технологии (дипломная работа)
количество страниц - 69
год сдачи - 2012



СОДЕРЖАНИЕ:



Введение 5
1. Анализ подходов к обработке и распознаванию бинарных изображений 6
1.1. Бинарные изображения 6
1.2. Задачи обработки бинарных изображений 9
1.3. Кодирование контуров бинарных изображений 13
2. Основы построения систем распознавания изображений 20
2.1. Составляющие задачи распознавания 20
2.2. Основные задачи построения систем распознавания 29
2.3. Классификация систем распознавания 35
3. Реализация системы распознавания бинарных изображений 43
3.1. Структура системы распознавание бинарных изображений 43
3.2. Реализация алгоритма распознавания изображений латинского алфавита 45
3.3. Выбор среды программирования для реализации алгоритма распознавания 48
3.4. Составляющие программной реализации алгоритма распознавания 54
3.5. Интерфейс программной реализации системы распознавания 62
Вывод 67
Литература 68






ВВЕДЕНИЕ:



На современном этапе развития информационных систем возникло очень важное научно-техническое направление, связанное с автоматической обработкой изображений и распознаванием зрительных образов. Условием успешного развития систем обработки изображений являются быстро улучшающиеся характеристики вычислительной техники и ее элементной базы, в первую очередь больших интегральных схем запоминающих устройств, микропроцессоров и однокристальных ЭВМ.
Существующие датчики дают возможность получать изображения в разных средах и различных диапазонах волн. Среди них необходимо, в первую очередь, отметить оптические, радио- и гидролокационные датчики ИК-диапазона. По сравнению с оптическими остальные датчики формируют, в основном, изображения с худшими характеристиками: меньшей степенью детальности, большими уровнем помех и временем образования изображения и др. Однако они могут иметь и серьезные преимущества, например, большую дальность действия, проникновение через облачность, лед, водную среду. Кроме того, количество поступающей информации в единицу времени от любого из датчиков чаще всего значительно превышает возможности существующих систем обработки на базе цифровой вычислительной техники.
В большинстве случаев практически значимые результаты могут быть получены по бинарным изображениям, формируемым по исходным многоградационным. При этом значительно упрощается процесс принятия решения, сокращается объем обрабатываемой информации и при современном уровне развития вычислительных средств достигается возможность работы в реальном масштабе времени.





СПИСОК ЛИТЕРТУРЫ:



1. Handbook of pattern recognition and computer vision / Chen C.H., Rau L.F. and Wang P.S.P.(eds.). - Singapore-New Jersey-London-Hong Kong: World Scientific Publishing Co. Pte. Ltd., 1995. - 984 p.
2. Shalkoff R.J. Digital image processing and computer vision. - New York-Chichester-Brisbane-Toronto-Singapore: John Wiley & Sons, Inc., 1989. - 489p.
3. Путятин Е.П., Аверин С.И. Обработка изображений в робототехнике. М: Машиностроение, 2000. 320 с.
4. Гиренко А.В., Ляшенко В.В., Машталир В.П., Путятин Е.П. Методы корреляционного обнаружения объектов. Харьков: АО "БизнесИнформ", 1996. 112 с.
5. Вестник Национального Технического Университета "Харьковский политехнический институт" Выпуск 114.- Харьков: НТУ "ХПИ", 2006. - 128с. 7. Прблемы бионики. Всеукраинский межведомственный сборник. Выпуск 50.- Харьков: "ХГТУРЭ", 1999. - 217с.
6. M.Wooldridge and N.R.Jennings, Intelligent agents: theory and practice, The Knowledge Engineering Review, v. 10:2, 1995, 115-152
7. Кораблин М.А., Ржевский Г.А., Скобелев П.О. Мультиагентная среда для поддержки принятия решений. // ICCS 2001, Санкт Петербург, 2001
8. В.И.Городецкий, М.С.Грушинский, А.В.Хабалов, Многоагентные системы (обзор) // Новости искусственного интеллекта, 1998, N2.
9. M.Mesarovic, Systems theoretic approach to formal theory of problem solving, in Theoretical Approaches to Non-Numerical Problem Solving, R.Banerji and M.Mesarovic, Eds. New York: Springer, 1970.
10. S.Amarel, Problems of representation in heuristic problem solving: related issues in the development of expert systems, Laboratory for Computer Science Research, Rutgers Univ., Tech. Rep. CBM-TR-118, 1981.
11. Р.Б.Банерджи. Теория решения задач как раздел искусственного интеллекта. ТИИЭР, т.70, №12, декабрь 1982.
12. Д. Пойа. Математическое открытие. - М.: Наука, 1976. - 448с.
13. Ефимов Е.И. Решатели интеллектуальных задач - М.: Наука, 1982.
14. Ю.В.П.Гладун, Н.Д.Ващенко, Н.И.Галаган. Системы планирования действий для сложных сред // Кибернетика. - 1982.-№5.- с.88-94.
15. Н.Попов Э.В. Экспертные системы. М.: Наука, 1987. 284с.
16. Н.Г.Загоруйко. Методы распознавания и их применение. М., 1972.
17. В.С.Тюхтин. Теория автоматического опознавания и гносеология. "Наука", М., 1976, 190с.


Цена: 8000.00руб.

ДОБАВИТЬ В КОРЗИНУ

УДАЛИТЬ ИЗ КОРЗИНЫ

КУПИТЬ СРАЗУ


ЗАДАТЬ ВОПРОС

Будьте внимательны! Все поля обязательны для заполнения!

Контактное лицо :
*
email :
*
Введите проверочный код:
*
Текст вопроса:
*



Будьте внимательны! Все поля обязательны для заполнения!

Copyright © 2009, Diplomnaja.ru