www.webmoney.ru

Добавить в корзину Удалить из корзины Купить

Нейронные сети. MS Excel. СУБД MS Access


ID работы - 621782
информационные технологии (контрольная работа)
количество страниц - 25
год сдачи - 2012



СОДЕРЖАНИЕ:



Содержание





Задание 1. Нейронные сети 3
Задание 2. Табличный процессор MS Excel 8
Задание 3. СУБД MS Access 11
Задание 4. Информационно-поисковые системы Интернета 21
Список литературы 25




ВВЕДЕНИЕ:



Задание 1. Нейронные сети
В последние несколько лет мы наблюдаем взрыв интереса к нейронным сетям, которые успешно применяются в самых различных областях - бизнесе, медицине, технике, геологии , физике. Нейронные сети вошли в практику везде, где нужно решать задачи прогнозирования, классификации или управления. Такой впечатляющий успех определяется несколькими причинами:
? Богатые возможности. Нейронные сети - исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости. В частности, нейронные сети нелинейны по свой природе (смысл этого понятия подробно разъясняется далее в этой главе). На протяжение многих лет линейное моделирование было основным методом моделирования в большинстве областей, поскольку для него хорошо разработаны процедуры оптимизации. В задачах, где линейная аппроксимация неудовлетворительна (а таких достаточно много), линейные модели работают плохо. Кроме того, нейронные сети справляются с "проклятием размерности", которое не позволяет моделировать линейные зависимости в случае большого числа переменных
? Простота в использовании. Нейронные сети учатся на примерах. Пользователь нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя, конечно, требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты, однако уровень знаний, необходимый для успешного применения нейронных сетей, гораздо скромнее, чем, например, при использовании традиционных методов статистики.
Нейронные сети привлекательны с интуитивной точки зрения, ибо они основаны на примитивной биологической модели нервных систем. В будущем развитие таких нейро-биологических моделей может привести к созданию действительно мыслящих компьютеров. Между тем уже "простые" нейронные сети, которые строит система ST Neural Networks , являются мощным оружием в арсенале специалиста по прикладной статистике.
Первой попыткой создания и исследования искусственных нейронных сетей считается работа Дж. Маккалока (J. McCulloch) и У. Питтса (W. Pitts) "Логическое исчисление идей, относящихся к нервной деятельности" (1943 г.), в которой были сформулированы основные принципы построения искусственных нейронов и нейронных сетей. И хотя эта работа была лишь первым этапом, многие идеи, описанные здесь, остаются актуальными и на сегодняшний день.
За последние десятилетия теория о нейроинтеллекте приобрела новое дыхание. Было предложено много интересных разработок, таких, например, как когнитон, способный с высокой достоверностью распознавать достаточно сложные образы (например, иероглифы) независимо от поворота и масштаба изображения. Автором когнитона является японский ученый К. Фукушима (K. Fukushima). В 1982 году американский биофизик Дж. Хопфилд (J. Hopfield) предложил интересную модель сети, получившей в будущем его имя. Позднее было разработано ряд эффективных алгоритмов: сеть встречного потока (R. Hecht-Neilsen), двунаправленная ассоциативная память (B. Kosko) и другие
Нейрокомпьютеры (компьютеры на основе нейронных сетей) обладают целым рядом свойств, привлекательных с точки зрения их практического использования:
- Сверхвысокое быстродействие за счет использования массового параллелизма обработки информации;
- Толерантность к ошибкам: работоспособность сохраняется при повреждении значительного числа нейронов;
- Способность к обучению; программирование вычислительной системы заменяется обучением;
- Способность к распознаванию образов в условиях сильных помех и искажений.




СПИСОК ЛИТЕРТУРЫ:



Список литературы
1. Вейскас Дж. Эффективная работа: Microsoft Office Access 2003. Издательский дом «Питер», 2005.
2. Джексон П. Информационные системы. – М.: Вильямс, 2004.
3. Ежов А.А., Шумский С.А. Нейрокомпьютеринг и его приложения в экономике и бизнесе. – М.: МИФИ, 2003.
4. Ефимова О. Д. Курс компьютерной технологии с основами информатики. - М.: АСТ. 2004.
5. Лозовский Л.Ш., Ратновский Л.А. Интернет – это интересно. – М.: ИНФРА-М, 2006.

Цена: 1000.00руб.

ДОБАВИТЬ В КОРЗИНУ

УДАЛИТЬ ИЗ КОРЗИНЫ

КУПИТЬ СРАЗУ


ЗАДАТЬ ВОПРОС

Будьте внимательны! Все поля обязательны для заполнения!

Контактное лицо :
*
email :
*
Введите проверочный код:
*
Текст вопроса:
*



Будьте внимательны! Все поля обязательны для заполнения!

Copyright © 2009, Diplomnaja.ru