Добавить в корзину Удалить из корзины Купить |
Атом - сложная частица ID работы - 614207 физика (контрольная работа) количество страниц - 23 год сдачи - 2012 СОДЕРЖАНИЕ: Содержание Электронные конфигурации атомов 3 Магнитные характеристики атома 6 Энергия ионизации 6 Сродство к электрону 8 Электроотрицательность 9 Доменделеевская систематизация элементов 10 Открытие Периодического закона Д.И. Менделеевым 14 Структура периодической системы элементов 16 Группы, периоды, энергетические уровни и подуровни 19 Значение Периодического закона 21 Литература 23 ВВЕДЕНИЕ: Атом - сложная частица Долгое время знаний о действительном строении атома не было. В конце XIX-начале XX в. было доказано, что атом является сложной частицей, состоящей из более простых (элементарных) частиц. В 1911 г. на основании экспериментальных данных английский физик Э. Резерфорд предложил ядерную модель атома с почти полной концентрацией массы в относительно малом объеме. Ядро атома, состоящее из протонов и нейтронов, имеет положительный заряд. Оно окружено электронами, несущими отрицательный заряд. Электронное строение атома определяет его свойства, в том числе важнейшую для химии способность атомов образовывать химические соединения. Благодаря малым размерам и большой массе ядро атома можно приближенно считать точечным и покоящимся в центре масс. Обычно в химии детально рассматривают систему электронов, движущихся вокруг ядра. Описать движение электронов в атоме с позиций классической механики и электродинамики невозможно, так как заряженная частица, двигающаяся по кругу, должна излучать электромагнитные волны, терять энергию и падать на ядро. В 1912 г. датский физик Н. Бор предложил решить эту проблему, выделив для электронов так называемые стационарные орбиты, двигаясь по которым, электрон не излучает энергию. Излучение может происходить лишь при переходе электрона с одной орбиты на другую. Со временем появились новые гипотезы, позволившие более точно представить движение электронов. Матричная механика немецкого физика-теоретика В. Гейзенберга описывала электрон как частицу, а волновая механика австрийского физика-теоретика Э. Шрёдингера – как волну. Эти теории были объединены в квантовой механике, которая в применении к химическим объектам получила свое развитие в квантовой химии. Квантовомеханическая теория строения атома рассматривает атом как систему микрочастиц, не подчиняющихся законам классической механики. Первые ядерные модели строения атома были похожи на строение Солнечной системы. Однако описать движение электрона так же, как описывается движение планет, оказалось невозможным. С точки зрения квантовой механики, можно говорить лишь об определенном состоянии атома, характеризующемся некоторой энергией, которая, в соответствии с принципом дискретности, может измениться только при переходе атома из одного такого состояния в другое. Кроме того, квантовая механика допускает, что электроны в атоме могут вести себя и как частицы, и как волны (принцип корпускулярно-волнового дуализма). И, наконец, согласно принципу неопределенности Гейзенберга, невозможно определить траекторию движения электронов в атоме. В настоящее время благодаря методам квантовой механики известно электронное строение всех существующих видов атомов. Атом элемента описывается определенной электронной конфигурацией (электронной формулой), зная которую, можно сделать предположения о химических свойствах этого элемента. Электронные конфигурации атомов Схематическое изображение орбиталей с учетом их энергии называется энергетическая диаграммой атома. Она отражает взаимное расположение уровней и подуровней энергии. На схеме орбитали обозначают в виде ячеек: , а электроны - в виде стрелок: или Электрон может занять любую свободную орбиталь, но, согласно принципу минимума энергии, всегда предпочитает ту орбиталь, у которой энергия ниже. Принцип запрета Паули ограничивает число электронов на каждой орбитали. Поэтому в одной ячейке (на атомной орбитали) может быть только один или два электрона. На каждом s-подуровне (одна орбиталь) могут находиться два э СПИСОК ЛИТЕРТУРЫ: Литература 1. Общая и неорганическая химия. Т.1. Теоретические основы химии: Учебник для вузов в 2 томах. Под ред. А.Ф. Воробьева. – М.: ИКЦ "Академкнига", 2004. – 371 с.: ил. 2. Степин Б. Д., Цветков А. А. Неорганическая химия: Учебник для хим. и химико-технол. спец. вузов. – М.: Высш. шк., 1994. – 608 с.: ил. 3. Хьюи Дж. Неорганическая химия. Строение вещества и реакционная способность. Учебник для вузов. Перевод с англ. – М.: Химия, 1987, 696 с.: ил. 4. Лидин Р. А., Андреева Л. Л., Молочко В. А. Справочник по неорганической химии. Константы неорганических веществ. Справочное пособие. – М.: Химия, 1987. – 320 с. 5. Лидин Р. А., Аликберова Л. Ю., Логинова Г. П. Общая и неорганическая химия в вопросах: Учебное пособие для вузов. – М.: Дрофа, 2004. – 304 с. Цена: 1000.00руб. |
ЗАДАТЬ ВОПРОС
Copyright © 2009, Diplomnaja.ru