Добавить в корзину Удалить из корзины Купить |
Взята ссуда на 10 лет в сумме 25000 (у.д.е.) под 25 процентов годовых ID работы - 600758 финансовый менеджмент (контрольная работа) количество страниц - 10 год сдачи - 2012 СОДЕРЖАНИЕ: Задание 1. Взята ссуда на 10 лет в сумме 25000 (у.д.е.) под 25 процентов годовых, начисляемых на непогашенный остаток. Возвращать нужно равными суммами в конце каждого года (начисление процентов совпадает со временем возврата). Требуется: составить модель погашения ссуды; вычислить величину годового платежа; определить величину всей возвращаемой суммы и величину общей суммы процентного платежа; сравнить данный вариант с вариантом возврата ссуды вместе с процентами в конце срока операции. Задание 2. Определить будущую стоимость обыкновенного аннуитета накопления с реальной доходностью 20 процентов в год с учетом инфляции (ежегодный темп инфляции составляет 15 процентов), если ежегодный вклад пренумерандо 1700 (у.д.е.), а срок операции 7 лет. Указание. Наращение производить по номинальной процентной ставке, исчисленной по формуле Фишера. Задание 3. Финансовый инструмент (актив) генерирует ежегодно постнумерандо в течение 5 лет постоянную сумму CF=2500 (у.д.е.). Реальная (приемлемая) доходность 10 процентов в год, ежегодный коэффициент риска Триска=0.1. Определить номинальную (необходимую) ежегодную ставку дисконтирования с учетом фактора риска и современную (приведенную) стоимость данного аннуитета. Решение. Задание 4. Предприятие рассматривает инвестиционный проект, первоначальные инвестиции по которому I0=20000 (у.д.е.). Ожидается, что реализация проекта в течение 5 лет обеспечит получение чистого дохода по годам постумерандо в объемах (у.д.е.): CF1=7000, CF2=9000, CF3=12000, CF4=11000, CF5=8000. Принятая ежегодная норма (ставка) дисконта d=15 процентов постоянна в течение всех лет экономической жизни проекта. Требуется: 1) оценить экономическую эффективность проекта, вычислив NPV, PI; 2) сравнить данный проект с альтернативным, у которого Iа=30000, NPVа=7250, а срок экономической жизни тоже 5 лет. Задание 5. Корпорации предлагается сформировать инвестиционную программу из шести проектов на четыре года при условии, что инвестиционные затраты по годам превышают установленный лимит средств (возможности корпорации по инвестированию ограничены). Корпорация имеет высокий финансовый рычаг и не планирует привлекать заемные средства. Рассматриваемые шесть проектов независимы и имеют тот же класс (уровень) риска, что и текущая деятельность корпорации. Проекты реализуются в объеме не более одного раза, а при необходимости могут реализоваться (инвестироваться) частично, при этом эффект, выраженный NPV, пропорционален доле реализации каждого проекта. Данные по затратам (инвестированию проектов по годам), лимит капитала bi и NPVj приведены в таблице: ВВЕДЕНИЕ: Задание 6. В задачах 0-9 приведены модели, описывающие зависимость некоторого финансового показателя от нескольких факторов. Требуется при помощи методов предельного анализа: частной производной и коэффициента эластичности произвести анализ чувствительности показателя на изменение факторов при конкретных значениях факторов. Задание 7. Используя модель САРМ и формулу расчета стоимости (цены) акции компании i, произвести вычисления и РО, а также и по следующим данным: Первоначальные значения Новые значения Номер варианта Rf (%) (%) ?i qi Di Rf' (%) ' (%) ?i' qi' Di' 5 9 14 0.9 0.03 2 7 13 0.8 0.02 2 СПИСОК ЛИТЕРТУРЫ: Задание 8. На эффективном рынке известны доходность безрисковых активов Rf=0.10, доходность рыночного портфеля (рынка) =0.15, ?-коэффициенты i активов доступных для выбора на рынке: ?1=0.80, ?2=0.90, ?3=1.00, ?4=1.10, ?5=1.20. Кроме того, известно предельное (сверху) значение ?-коэффициента портфеля активов ?р=1.05, определенное инвестором, желающим иметь портфель максимальной доходности (выделяемые инвестором средства должны быть полностью инвестированы). Заданы дополнительно следующие условия: доля первого актива в портфеле должна быть не менее 0.25; сумма долей второго и третьего активов должна быть равна 0.35; доля четвертого актива не должна превышать 0.55, а доля пятого актива не должна превышать 0.15. Требуется: 1) рассчитать по модели САРМ ожидаемые доходности всех пяти активов; 2) построить экономико-математическую модель задачи, максимизирующей доходность портфеля, сформированного из данных активов при заданных ограничениях; 3) решить задачу оптимизации портфеля симплексным методом; 4) произвести анализ результатов решения и чувствительность модели на изменение параметров. Задание 9. Предположим, что денежные расходы компании в течении года составляют V=300000 (у.д.е.); приемлемый и возможный для компании процентный доход по краткосрочным ликвидным ценным бумагам r=0.12, расходы по конвертации (трансформированию) ценных бумаг в денежные средства c=120 (у.д.е.). Рассчитать, пользуясь моделью Баумоля-Тобина, сумму разового пополнения Q*, количество сделок по конвертации в год, общие расходы по реализации такой политики (OP); прокомментировать политику управления денежными средствами. Задание 10. Предположим, что минимальный ежедневный остаток денежных средств компании в объеме Qн=1000 (у.д.е.), дисперсия ежедневных денежных потоков ?2=45000, процентная ставка (норма доходности по высоколиквидным ценным бумагам) r=0.0003 в день, расходы по конвертации (операционные издержки по продаже ценных бумаг) c=30 (у.д.е.). Рассчитать, пользуясь моделью Миллера-Орра, размах вариации R, верхний предел остатка денежных средств Qв, точку возврата Q*, прокомментировать политику управления денежными средствами компании. Цена: 1000.00руб. |
ЗАДАТЬ ВОПРОС
Copyright © 2009, Diplomnaja.ru